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Abstract 

Question Answering (QA) is a computer science discipline 

within the fields of information retrieval and natural language 

processing (NLP), which is concerned with building systems that 

automatically answer questions posed by humans in a natural 

language [38].  We are trying to build a basic distributed version of 

this system which will give intelligent, meaningful and relevant 

answers at runtime by processing the information stored in a large 

corpus. The question will be processed and information will be 

retrieved by using Hadoop and MapReduce. Our current aim is to 

build such a system for user-specified topics. 
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I. INTRODUCTION 

The project aims to use large amount of data in a natural 
language text corpus in order to develop a system, which can 
understand and answer questions in natural language. 

A question answer system will require access to a large 
amount of factual information. We plan to use three text 
corpora as our source of information. The corpora are 
Wikipedia [30], Wiki News [31] and Reuters News Corpus 
[44]. We plan to use Hadoop in order to query and process the 
information provided by text corpora. The question will be 
processed by an NLP component which will generate 
keywords from the question and use it to query the text corpus.  

II. MOTIVATION 

A system capable of answering questions has been an AI 
dream for many decades now. After widespread initial interest 
in the 1950’s, this field saw a loss in popularity for many years 
which was later known as the AI winter [52]. With the advent 
of Big Data and distributed computing technologies like 
Hadoop and MapReduce, it became possible to processing 
large amounts of information in reasonable time. This 
combined with statistical techniques like Machine Learning has 
effectively ended the AI winter and lead to a lot of advances in 
the field in recent years. 

The amount of data being generated currently is enormous. 
A system which can interact with a user and intelligently 
responding using the large amounts of data as a knowledge 
base would be a very effective way to make data useful for 
ordinary users. Anyone who needs specific, meaningful 
information retrieved from a particular dataset in simple 
language can benefit from such a system. The same algorithm 
can be used to answer legal questions by going over legal data. 

Or health questions by going over medical data. For example, 
the user starts with a question on a topic and continues to ask 
questions on the same topic, our system will load data only 
based on his initial topic. 

With every passing day more and more knowledge is added 
to the web and to build better and more accurate systems, it is 
important that we factor in this data. To build systems which 
respond quickly to user’s questions, we can make use of big 
data technologies like Hadoop and MapReduce [1, 2, 3, 4]. 
These technologies allow us to process the large quantities of 
data in parallel and come with real-time answers to questions. 
We saw that what we were studying in class can be directly 
used to build modern QA systems. 

III. RELATED WORK 

There are two schools of thought on Question Answering 
[14]. The earlier one operates on structured data [11]. 
Structured data is commonly represented as RDF (Resource 
Description Framework) [45] with triples of the form (subject, 
relation, object). For example: Barack Obama (subject), 
president of(relation), United States(object). The second school 
of thought operates on raw text from various sources. 
Currently, most of the systems are a hybrid approach, with 
question type classification deciding which underlying data 
source to use [8]. 

According to recent surveys of QA based on structured data 

[11], the different systems support different kinds of RDF data 

sources. There are various RDF data sources (and ontologies): 

DBPedia [46], Freebase [47] amongst the major ones, 

MuzicBrainz [48], Mooney Geography [12] and many small 

ones. The QA systems are two types, ontology specific and 

ontology independent. The major problem being that each 

ontology has its own vocabulary for relations and its own 

schema. This lack of standardization although makes RDF 

more usable, makes the use of QA systems on top of it more 

difficult. Amongst the ontology independent QA systems is 

FREyA [12], which beats all other such systems and is actively 

supported on Github by its creators. FREyA uses sophisticated 

NLP techniques to decipher the question, understand the 

underlying ontology and can answer questions with high 

accuracy. 

A more recent trend, since 2002 majorly has been to use 

publicly available text on the internet to answer questions. Our 

system follows this school of thought. [26,14, 11] 



 
Among modern QA systems, one of the most advanced is 

IBM’s Watson and the systems abilities were on display when 
it won the game show Jeopardy competing with expert human 
players. Watson uses a combination of search engines and 
domain specific knowledge bases to come with natural 
language answers to compound questions [8]. Building a 
system comparable in performance is beyond the scope of this 
project.  

 

IV. DESIGN 

The project will basically have three components and many 

subcomponents. The design given below in Figure 1 is a 

modified version of the design presented in [8, slide 11]. The 

main components are as follows: 

1. Question processing (ProcessQueryJson.py) 

a. Query Formulation 

b. Answer Type Detection 

2. Answer retrieval (Map-reduce, searcher. Pig) 

a. Document Retrieval 

b. Document Ranking 

3. Answer processing  (ProcessAnswer.py) 

 

Figure 1: Design of our QA system 

 
For a lot of the NLP knowledge that we have applied, we 

relied on the notes of the Statistical NLP course at NYU [43].   

1) Question Processing: 

The given question is used to generate keywords which are 

then used to narrow down the answer. Python programming 

language was used to code this component. Python was chosen 

because of the abundance of NLP and machine learning 

libraries which were critical for our project. Question 

processing involves query formulation and answer type 

detection [8]. For query formulation it is essential to determine 

which words in the question will ultimately be the deciding 

factors for a correct answer. We can ignore the stop-words like 

“is, the, and” and focus more on the nouns, adjectives and 

verbs. To identify these components we use a part of speech 

tagger. Once we have the nouns we can use named entity 

recognition to determine which named entities are referred to 

in the question [8]. Based on the type of question, we can also 

determine what named entity, if any, is expected as an answer. 

For example, if the question starts with a “who” the expected 

answer is a PERSON and if the question starts with a “where” 

the answer would be a location. 

To limit the scope of the project, we decided to restrict the 

type of questions to simple factoid questions. A fact based 

questions will have a simple fact as an answer. The nature of 

the question is such that it need not be broken down into sub 

questions which have to be resolved separately. For example 

“Where is the Louvre located?” The answer is “Paris”. The 

answer to this question is a straight forward fact. A more 

complex question would need to be broken down into two or 

more factoid questions to be answered. Consider the question 

“William Wilkinson’s “An account of the principalities of 

Wallachia and Moldova” inspired this author’s most famous 

novel”. The answer is “Bram Stoker”. In the example below, 

answer to the first part of the question is a clue for the second 

part of the question. This question was correctly answered by 

IBM’s Watson super computer in the game show Jeopardy [8]. 

This limiting of question space was done given the limited time 

frame we had to complete the project.  

One of the primary tasks once given a question is to 

determine what type of an answer is expected. Many types of 

factual questions will expect a named entity as a response. 

Named entities, which are usually proper nouns, pre-defined 

categories such as the names of persons, organizations, 

locations, expressions of times, quantities etc. For example, the 

question “Who founded Virgin Airlines?” has a “PERSON” as 

the answer. The question “Which country has the largest 

population?” has a “GPE” or a Geo-political entity as the 

answer. Both PERSON and GPE are examples of NLTK 

named entity tags [9]. The answer type can be determined 

using some rule based techniques or machine learning or a 

combination of both. Currently we are using rule based 

techniques because the question types we are handling are 

limited. So a “who” type question will result in an answer type 

“PERSON” and a where type question will result in an answer 

type “LOCATION” or “GPE”.  

However not all answers will return a named entity as an 

answer. For example, a question like “Who is Narendra 

Modi?” will not return a PERSON as the answer. Similarly 

“what” questions, “how” questions and any “Who PERSON?” 

questions will have more descriptive answers and will not 

return any named entities. In such cases emphasis is on the 

“headword” which is the first noun after the “Wh-” word. For 

example, “What is the capital of Texas?” will have emphasis 

on “capital” and we will look for sentences which have the 

word capital in them. 

In query formulation we will pick out certain key words 

from the question which we will use to query the database and 

retrieve documents. For the purposes of the project, we will 

ignore the frequently occurring stop words like “is”, “the”, 

“of”, “in”, “his” etc. We are only considering nouns, adjectives 

and in some cases verbs to formulate our queries. Given a 

question, our first task would be to determine the parts of 

speech of each word in the question. This is achieved using the 

NLTK library which is open source. 



 

Figure 2: Flow of Question Processing component [9] 
 

Given a question we first break it down into a list of words 

and then try and determine the part of speech of each word. 

The standard way to do this is using Hidden Markov Model to 

train over a large data set of human annotated part of speech 

tags. Once this is done we get a set of possible part of speech 

tags for each word in the sentence and the probability of each 

tag. Given a good enough data set, we can get accuracy of 

around 95% which is close to state of the art. We can then 

determine the most likely tag sequence using the Viterbi 

algorithm. NLTK also considers the probability of the tag 

given the probability of the preceding word(s). The part of 

speech tagging component is built on top of pre-trained.  

Consider the below example: 

Q: Who is the President of the United States?  

After running part of speech tagger we get the following 
output: 

[('Who', 'WP'), ('is', 'VBZ'), ('the', 'DT'), ('President', 'NNP'), 
('of', 'IN'), ('the', 'DT'), ('United', 'NNP'), ('States', 'NNPS'), ('?', 
'.')] 

We then use this output to determine if any named entities 
exist in the POS sequence. Given below is the output: 

(S Who/WP is/VBZ the/DT President/NNP of/IN the/DT 

  (GPE United/NNP States/NNPS) 
  ?/.) 

As you can see, United States being a geo political entity 
(GPE) was correctly recognized. Now that we know that this is 
a “Who” question and the named entity in it is not a PERSON 
and hence we can conclude that the response is a PERSON. 
The other case in “Who” questions can be like the one 
described below. 

Q: Who is Barack Obama? 

After part of speech tagging: 

[('Who', 'WP'), ('is', 'VBZ'), ('Barack', 'NNP'), ('Obama', 
'NNP'), ('?', '.')] 

After running the named entity recognition component we 
get: 

(S Who/WP is/VBZ (PERSON Barack/NNP Obama/NNP) 
?/.) 

We now know that the question is about a person Barack 
Obama. The answer in this case cannot be a PERSON type. It 
would be a description that can be anything. But the headword 
Barack and the noun Obama would be important. 

For selecting words to build our query, we first begin by 
ignoring the “Wh-” word and the stop words. Considering the 
first example, we are left with the words “President”, “United” 
and “States”. We can club United and States together and only 
look for sentences which contain these two words one after the 
other. No other word can come between United and States and 
if it does, the words are being used in ways which will not be 
useful to us. But this is applicable to “United States” and not 
applicable to “Barack Obama”. The answer sentence may state 
that “Barack Obama” or “Obama” or “Barack Hussain Obama” 
is the president of the United States. All are correct. Hence we 
look for “Barack” and “Obama” separately in the database. 

In the query formulation, we assign the highest priority to 
the Named Entity or headword in the question. Followed by the 
nouns and then by the adjectives. 

TYPE OF ENTITY PRIORITY 

NAMED ENTITY, HEAD WORD 10 

NOUN 7 

ADJECTIVE 5 
 

 

Figure 3: Detailed design of our QA system 

 

2) Answer Retrieval: 

 

a) Choice of dataset: 

Our learnings from reading papers which used DBPedia 

like knowledge base is that, these systems are not scalable and 

are not up-to-date [12, 5, 11]. DBPedia extracts structured 

information from Wikipedia and curates them into RDF 

formatted data [46]. RDF is a resource description framework, 

which has an annotation for each data word describing 



attributes of that data [46]. For example the RDF of Michelle 

Obama [10] will have attributes like birthdate, nationality, etc. 

Although this dataset provides a plethora of information about 

a particular subject, it is not scalable. For e.g. If the spouse of 

Michelle Obama were to change, the entire RDF needs to be 

re-engineered by DBPedia and release.  Thus the absence of 

live information does not make DBPedia a reliable knowledge 

base for a question answering system.  

Thus we settled on choosing Wikipedia dataset which 
reflects up to date information stored as Wikipedia articles. 
The database dumps are updated every day [30]. We also used 
WikiNews [31] as a news data source for new events. For 
referring to important events in the past, we are referring to the 
Reuters News Corpus. 

 Wikipedia articles were conventionally stored as XML 
formatted files with the content of each articles stored within 
<Text><Title><ID> tags [30]. We used a Hadoop MapReduce 
job to clean up the data.  The cleaned-up data is stored in a Pig 
Table for further retrieval and processing.  We used HBase to 
store IDF (Inverse Document Frequency) values which will 
help in scoring/ranking candidate answers to the question. 

b) XMLParser Module:  

Since the input data is an XML formatted data, we had to 

figure out a way to allow Mapper class take an XML input 

data type as input. Since each of the XML page data must be 

processed as a whole, to split and stream them as text bytes 

was not feasible in Native Hadoop. Hadoop MapReduce does 

not have built-in support for XML. Hence we used Apache 

Mahout’s XMLInputFormat class, which provides support for 

serializing/deserializing XML documents [32]. 

XMLInputFormat class extends the TextInputFormat class of 

Hadoop library and takes in two parameters namely the 

<start> and <end> tags. The text which is embedded between 

the <start> and <end> tags are processed as a whole. 

 

To store our input data in a specific format and to enable 

transfer of data from Mapper to reducer, we wrote a custom- 

serialization object called WikiDataWritable. Our 

WikiMapper.java handles the conversion of XMLStreambytes 

and creates a WikiDataWritable Object. WikiDataWritable is a 

custom-serialization object with attributed defining our 

preferred XMLFormat. WikiDataWritable implements the 

Writable Interface to serialize and de-serialize XMLData when 

read/written as Input/Out Stream. We chose to have the output 

format from MapReduce as a common XML which will help 

us query multiple data sources seamlessly. Also XML provides 

a seamless integration into Pig, which is our second module 

[33].  

 

Figure 4: Retrieval engine – Hadoop MR mode 
 

c) Inverse Document Frequency calculator:   

To understand how important a word is in the Query, we 
need to calculate the tf-idf value for each term in the query. Tf 
refers to the term frequency (number of times a word ‘t’ occurs 
in a document).  IDF value is the inverse document frequency 
(how important is this term ‘t’ among all the documents).  Tf-
idf weight is used as a measure to score/rank set of possible 
candidate answers [34].  The formulae for both are given 
below:  

 

Figure 5: TF-IDF score description [34] 

 
We write a Hadoop MapReduce job to scan all sets of 

documents (given by XMLParser Module) take frequency 
values of all possible words in the document.  The output of 
this phase is stored as a CSV in hdfs to be later loaded into 
HBase table idf.  

d) Searcher.pig: 

We use Apache pig to load the cleaned wiki dataset as a 

table into Pig. Pig offers XML support through its XPath UDF 

in piggybank.jar [33]. We load our cleaned.xml data as a table 

into Pig (WikiTable). The query output (as Json) from 

Question processing phase is also loaded into Pig using the 

native JsonLoader of Pig (QueryTable) The choice of pig over 

hive arrives from this aspect of easy integration of semi-

structures data like XML and JSON [33, 35]. Term-frequencies 

as described above are calculated by a series of joins between 



the WikiTable and QueryTable.  The idf-values are loaded 

from HBASE using HBaseStorage.  

 

Figure 6: Data-pipeline in PIG of searching articles 

e) Filtering articles: 

The pig script for searching over the corpus takes as input 

argument a json that is structured as follows:  

{ 

 "text": "<Actual question typed by 

user>", 

 "answerType": "<The NLTK named 

entity tag of answer>", 

 "words": [{ 

  "priority": <float value>, 

  "word": "word 1" 

  “alternatives”:[“alt1”, 

“alt2”…] 

 },… 

] 

} 

Figure 7: Format of json received from Query Processing 

component 

 

The pig script uses a Filter UDF, which returns true for 

articles that have any of the whole words (ignoring case) in 

the “words” part of the json, or their corresponding 

alternatives. This results in a lot of articles, but that’s a 

problem for the ranking system.  

 

 

f) Ranking Articles: 

The ranking UDF called from the pig script returns a score for 

each article. This UDF is only called for the filtered articles, 

and the UDF scores each article independent of any other 

article. A higher score signifies that the rank is higher. 

 

We use two types of ranking heuristics:  

1) tf-idf score of matched words in the article  

2) proximity score of matched words in the article 

Before we discuss the heuristics, we need to establish that we 

could also learn to rank, using user data, but we need 

heuristics to begin with. We can collect user data, by 

monitoring on a web UI the rank of the answer (in case of 

multiple answers) or correctness of answer. The inverse rank 

[8] of chosen answer or the rejection of answer can then be 

used to tune the ranking algorithm internally by gradient 

descent. Back to our heuristics. 

 

The proximity score is the measure of the closeness of the 

query words in a document. It is indicative of the relevance of 

the document to the actual answer. As an example, for the 

query words “president”, “United”, “States” should give 

higher priority to an article having them in the same sentence, 

versus an article having them in different paragraphs. 

 

We use a common metric called “Slop Distance” [49] for 

measuring distance between query words in a sentence. The 

slop distance is defined as the number of non-query words in 

the minimum length contiguous array of words containing all 

the matched query words of an article. Here are a few 

examples for the previously discussed query words: 

 

Sentence Slop 

Distance 

The President of The United States 2 

United States President, Barack 

Obama 

0 

The President of India visited The 

United States 

4 

Figure 8: Examples of Slop Distance 

 

To measure this slop distance we designed an algorithm [50], 

which calculates the Slop distance in O(n) time complexity 

and O(number of query words) space complexity. It is present 

in “ScoreGen.java#minWindow()” 

 

Given that we have our slop distance, we now need to 

generate a score which will be able to compare various 

documents with their own number of matched terms and slop 

distances. We need a function which takes (slop distance, 

number of matched words) and returns a score. Let’s denote 

slop distance as “x”, number of matched words as “n” and 

score as y = f(x,n). 

 

The first solution is to vary each proximity score between the 

number of matched query words in the article and +1. For 

example for three matched terms, we get a score between 

three and four. 

 

This solution however would fail in the following case. Article 

1 has 4 matched terms with a slop distance of 100 (consider all 

the words being mentioned in two different paragraphs). 

Article 2 however has three terms matched, but with a slop 

distance of 5 (maybe, in the same sentence). Clearly, article 2 

is more likely to contain the answer, our solution above is not 

usable. 



 

We need a function, which till a certain threshold th, scores 

between [n, n+1] for an article and below that afterwards. This 

would choose an article with (n-1) matched terms over an 

article with (n) matched terms too far apart. We would also 

like that the threshold be a function of number of matched 

terms as we would need to keep a bigger slop window for 10 

terms in comparison to 2 terms. So th needs to be th(n) 

 

Let’s consider three types of such functions in the diagram 

below. We are considering n = 2, and th(n) = 2n. That is the 

number of matched terms are 2, and if they have a slop 

distance more than 4, we score them below 2. 

 

 
Figure 9: Comparison of choices for y=f(x,n) for n=2 

 

The negative exponential penalizes less for small x, but grows 

very fast. The negative logarithm penalizes okay till x=2n, but 

never penalizes high slop a lot (goes very slowly to –infinity). 

The negative linear function, gets the best of both worlds and 

also reaches –infinity at an appropriate pace. We established 

this intuition after repeated search rankings with ambiguous 

examples of the kind discussed above. We choose linear as 

our preferred f(x,n), and fixed on th(n) = 2n after these 

experiments. 

 

𝑓(𝑥, 𝑛) =  
−𝑥

2𝑛 − 1
+  

2𝑛2 + 𝑛

2𝑛 − 1
 

 

Figure 10: Chosen proximity function 

 

This is how our f(x,n) looks for 𝑛 ∈ {1,2,3,4,5,6}  and 𝑥 ∈
[1,15]. The black line denotes the threshold function below 

which the score is below n. 

 
Figure 11: Chosen f(x,n) 

 

n 1 2 3 4 5 

Color Blue Red Green Purple Orange 

Figure 12: Colors of line for different "n" values 

 

Now, we have an appropriate f(x,n) which scores within it’s 

bound and penalizes appropriately. Let’s see some toy results 

to see the output of our function. 

 

Text Proximity 

Score 

Barack Obama is the President of the United 

States 

3.8 

The President of India visited the United 

States 

3.4 

President of India 2 

Random text snippet 0 

Figure 13: Sample text snippets and their proximity scores 

calculated by our heuristic. 
 

3) Distributed system architecture:  

 

In the below few sections, we investigate our choices of 

appropriate distributed systems technologies over their 

alternatives.  

Hadoop for cleaning data:  Although there was a lack of 

XML support in Native Hadoop, we used Hadoop’s 

distributive capabilities to process the entire Wiki dataset. 

MapReduce is much more scalable than existing file-indexing 

systems like solr [32].  

Pig for retrieving and ranking data:  The inbuilt support for 
loaded semi-structured data like XML’s and Json were better 
with Pig than with Hive [33, 35]. Also, Pig gives the user the 
possibility to write seamless User defined functions(UDF’s) to 
work on bags/tuples of data in numerous ways [41]. We also 
created a filtering UDF in Hive by sub classing GenericUDF. 
This achieved the same goals as SatisfyQuery UDF in Pigs. 
We chose Pig over Hive later as it had very good support for 
parsing XML data. This flexibility allowed us to use Pig 
instead of Hive.   



HBase as word,idf value store : HBase [42] is a distributed, 

scalable data store built on top of HDFS. In our case, Hbase 

table stores the idf values for all the words in the data set. This 

could run into millions of rows. HBase stores <word,val> pair 

as a dictionary in hdfs. This makes it more scalable and 

retrieval and lookups are faster. In future, if we would like to 

add attributes to a keyword(noun/ver/adjective), we just have 

to define new column family in existing columns.  

Pig UDF’s over Piglatin: We are using Regex to filter 

documents, which contain the target word. In the design we 

also support the use of alternatives to words, which are 

semantically appropriate synonyms. This complex processing 

is what prompted us to write our own UDF [41]. The 

SatisfyQuery UDF subclasses FilterFunc from pig and returns 

a true for any document satisfying the json query. 

For scoring the articles, we have created our own function for 

score calculation. This also required the use of UDFs in pig. 

ScoreGen subclasses EvalFunc<Float> to generate a float score 

for each article. Moreover, Pig UDFs are extremely easy to 

write and integrate with the pig scripts. They also give the 

added advantage of using Java. This facilitated us to take a 

complex json as input to the UDF and de-serialize it using 

Jackson libraries. 

4) Answer Processing: 

 Once the passage retrieval engine has returned a set of 

paragraphs which may contain the answer to our query, the 

answer processing component goes through each sentence of 

each paragraph in order to determine if it contains the answer 

to the question. Once again, for the sake of simplicity given the 

time frame, we consider just one candidate answer and as soon 

as we find an appropriate sentence, we exit the application. 

Often there are many candidate answers and various machine 

learning techniques can be employed in order to choose the 

best one.  

To find the correct answer, we consider one sentence of one 

paragraph at a time. We then run part of speech tagging and 

named entity recognition on this sentence the same way as 

above.  Once we have the POS tags and the named entities 

[43], we then check and see if the sentence has everything we 

are looking for. Consider the examples below (The data is from 

the Wikipedia data dump): 

Q: Where is the capital of England? 

So we are looking for a sentence which contains a GPE 
(other than England) and the words “capital” and “England”. 
Also consider a sample paragraph given below returned by the 
information retrieval component. 

“England's terrain mostly comprises low hills and plains, 
especially in central and southern England. However, there 
are uplands in the north (for example, the mountainous Lake 
District, Pennines, and Yorkshire Dales) and in the south west 
(for example, Dartmoor and the Cotswolds). The capital of 
England is London, which is the largest metropolitan area in 
the United Kingdom and the European Union.[nb 1] England's 
population of over 53 million comprises 84% of the population 

of the United Kingdom, largely concentrated around London, 
the South East, and conurbations in the Midlands, the North 
West, the North East and Yorkshire, which each developed as 
major industrial regions during the 19th century.[9]” 

Only one sentence “The capital of England is London, 
which is the largest metropolitan area in the United Kingdom 
and the European Union.” qualifies all of our criteria and is 
extracted and printed as the answer. Consider the following 
question: 

Q: Who was named the 2009 Nobel Peace Prize laureate? 

In this case we are looking for a sentence which contains a 
PERSON and the words “Nobel”, “Peace”, “Prize” and 
“laurate”. A sample paragraph as retrieved is given below. 

“In 2004, Obama received national attention during his 
campaign to represent Illinois in the United States Senate with 
his victory in the March Democratic Party primary, his 
keynote address at the Democratic National Convention in 
July, and his election to the Senate in November. He began his 
presidential campaign in 2007 and, after a close primary 
campaign against Hillary Rodham Clinton in 2008, he won 
sufficient delegates in the Democratic Party primaries to 
receive the presidential nomination. He then defeated 
Republican nominee John McCain in the general election, and 
was inaugurated as president on January 20, 2009. Nine 

months after his inauguration, Obama was named the 2009 
Nobel Peace Prize laureate.” 

The last sentence contains the answer and is correctly 
selected and printed.  

One obvious improvement would be to print only the 
answer and not any other part of the sentence. So in the above 
example, “Nine months after the inauguration” is additional 
information that need not be given and only “Obama” can be 
printed as the answer. In this example the solution is trivial and 
we simply print the named entity found in the sentence. But 
consider the answer in the previous example. In “The capital of 
England is London, which is the largest metropolitan area in 
the United Kingdom and the European Union.” There are three 
location entities London, United Kingdom and European 
Union. Any one of these could be the answer and we would 
need to rank the potential answers using features like [8] 
Pattern Match, keyword distance novelty factor etc. This is 
something we hope to incorporate in our future endeavors.  

 

V. RESULTS 

Experimental setup issues: We faced some hurdles in 
choosing the right distributed technology for retrieving 
documents. Although Hive and Pig were both possible 
systems, we settled on Pig based on the ease of setup and 
flexibility of writing UDF’s to interact with Hive. The choice 
of Hbase as distributed key-value store although was intuitive 
we faced some hurdles when retrieving records from Hbase. 
The integration of Hbase with Pig is not possible with the 
current stable release(1.12) of Hbase[36]. Hence we had to use 
an older version(0.98) to make Hbase work with Pig.   Also, 
since Hbase also stores the timestamp data (at which a record 
was inserted), It makes more sense to use Hbase for range 



based queries which involve Timestamp. Our learning out of 
this experiment is that Hbase was a poor choice of Distributed 
key-value store and a better choice would’ve been Hive.  
Another issue we faced was in writing PIG UDF’s which 
accepts both a tuple and a databag as arguments[37]. The 
scenario arose when we wanted to send the QueryTable to a 
PIG UDF along with tuples(Title,Text). To work around this 
issue, we had to write expensive PIG Latin joins which could 
otherwise have been handled in PIG Udf’s.  

We had to narrow down the scope of questions we were 
answering for this project because this was turning out to be a 
large undertaking. We did this by picking simple factoid based 
questions. We also made some simplifying assumptions in 
terms and used some heuristics for ranking and considering 
only one answer which matched our requirements. 

Below are some of the questions we were able to answer 
correctly. 

Q: Who is Barack Obama? 

A: Barack Hussein Obama II (born August 4, 1961) is the 
44th and current President of the United States, as well as the 
first African American to hold the office 

Q: Who is the President of the United States? 

A: Barack Hussein Obama II (born August 4, 1961) is the 
44th and current President of the United States, as well as the 
first African American to hold the office 

Q: Who was named the 2009 Nobel Peace Prize laureate? 

A: Nine months after his inauguration, Obama was named 
the 2009 Nobel Peace Prize laureate. 

Q: What is the capital of England? 

A: The capital of England is London, which is the largest 
metropolitan area in the United Kingdom and the European 
Union 

Q: Who is Malik Junaid Ishtiaq Ali? 

A: Malik Junaid Ishtiaq Ali son of Shaheed Abdul Razaq 
Jaora who was the Journalist and martyred by the smuglers due 
to the expose off the crime of the smuglers in Mianwali 

Not answered correctly: 

Q: When was Wales included in The Kingdom of England? 

<No Answer> 

Initial hypothesis and results: Our hypothesis was that It is 
feasible to build a Text based Question answering system using 
distributed system technologies to achieve same or better 
performance over similar QA systems build using traditional 
technologies like solr/lucene or SQL relational databases on 
structured data like RDF’s. Our experimental results show that 
we have indeed built a simple system, which by leveraging 
advantages of Hadoop & Mapreduce technologies performs 
much better in speed/scale over traditional file indexing 
systems like solr/lucene despite our choice of open text data 
which is a harder subset problem among QA systems. 

VI. FUTURE WORK 

The scope of this project is immense and given enough 
time, we can come with a more intelligent application that can 
still be used in real-time. One thing missing from our project is 
a user interface. A larger knowledge base deployed on a cluster 
will significantly cut down response time. 

As of now we are posting grammatically correct questions 
with correctly spelled words. Checking grammatical and 
spelling correctness can easily be incorporated in Query 
processing and will make the application more user friendly. 
Another useful addition would be utilizing word2vec [51] to 
handle tenses, synonyms and similarly used words. This would 
help us detect answers when they contain synonyms or plurals 
of the query words. We also need to move from a rule based 
answer type detection heuristic to a more data driven approach. 

All modern Question Answering systems use a 
combination of information retrieval and knowledge based 
methods [38]. Our system employs only Information Retrieval 
methods. This was chosen as it increases the usability of our 
system to openly available data on the web. Domain specific 
knowledge bases would be useful for answering questions 
which require in-depth knowledge of any specialized field. 
Like highly complex questions in medicine, math and science. 

We would also like to handle some descriptive questions 
like “how” and “explain” type questions. Another good 
possibility to explore would be breaking down complex 
questions in many sub questions. Then answer each question 
individually leading up to a final answer. Additional handling 
of pronouns will help us answer a sequence of questions on the 
same topic so the continuous questions like “Who is Obama?” 
followed by the question “Who is his wife?” will be 
understood and answerable.  

Using Pig, we were able to retrieve only the matching 
documents/articles for each query. This can further be refined 
by additional MapReduce or spark jobs to retrieve the exact 
passage/sentence which will answer the query.  

Also, The existing system is run as a batch processing 
system. Searcher. Pig script is called manually after the 
completion of the MapReduce programs. HBase table is 
created and loaded separately into HDFS. Going further, we 
can integrate all these separate distributed processing jobs into 
a synchronized dataflow script using Oozie[39].  

To speed up data processing, we can use an in-memory 
data processing framework like Apache Spark[40] instead of 
Hadoop where intermediate-results are stored back in disk after 
each MapReduce task.   

Extending the distributed system capabilities will give us a 
real time question answering system where users can ask 
questions and get immediate answers.  

Incorporating all these functionalities will help us develop 
an expert system people can have a conversation with. 
Everything discussed so far is achievable with current 
technology and we hope to continue working on this after the 
completion of the Real-time Big Data Analytics course. 



VII. CONCLUSION 

We have successfully built a text based Question Answering 

system on top of Hadoop. We have limited the scope of the 

questions to prioritize focus over the overall system 

architecture. The resulting system uses the Wikipedia data 

dump, the WikiNews data dump and Reuters News Corpus to 

answer a limited set natural language questions. The choice of 

a distributed system architecture in our case where the data 

corpus was huge (40GB), and there were multiple 

dataprocessing steps involved significantly sped up the 

processing time compared to a system which processes 

documents sequentially. Our QA system had many modules 

which were trivially partitionable and recombinable and by 

bringing in distributed approaches in these modules, we 

achieved an almost real time system with low latency 

execution. With improvements suggested in the previous 

section, we can suppose that Distributed technologies like 

Hadoop, Map reduce hints at a possibility of bringing  a 

complex process intensive system to real time efficiencies.  
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