
Distributed QA System

Saurabh Pujar

M. S. in Computer Science

New York University

ssp437@nyu.edu

Bharathi Priyaa T.

M. S. in Computer Science

New York University

bt978@nyu.edu

Kshitiz Sethia

M. S. in Computer Science

New York University

kshitiz.sethia@nyu.edu

Abstract

Question Answering (QA) is a computer science discipline

within the fields of information retrieval and natural language

processing (NLP), which is concerned with building systems that

automatically answer questions posed by humans in a natural

language [38]. We are trying to build a basic distributed version of

this system which will give intelligent, meaningful and relevant

answers at runtime by processing the information stored in a large

corpus. The question will be processed and information will be

retrieved by using Hadoop and MapReduce. Our current aim is to

build such a system for user-specified topics.

Keywords—analytics, NLP, AI, map reduce, Hadoop

I. INTRODUCTION

The project aims to use large amount of data in a natural
language text corpus in order to develop a system, which can
understand and answer questions in natural language.

A question answer system will require access to a large
amount of factual information. We plan to use three text
corpora as our source of information. The corpora are
Wikipedia [30], Wiki News [31] and Reuters News Corpus
[44]. We plan to use Hadoop in order to query and process the
information provided by text corpora. The question will be
processed by an NLP component which will generate
keywords from the question and use it to query the text corpus.

II. MOTIVATION

A system capable of answering questions has been an AI
dream for many decades now. After widespread initial interest
in the 1950’s, this field saw a loss in popularity for many years
which was later known as the AI winter [52]. With the advent
of Big Data and distributed computing technologies like
Hadoop and MapReduce, it became possible to processing
large amounts of information in reasonable time. This
combined with statistical techniques like Machine Learning has
effectively ended the AI winter and lead to a lot of advances in
the field in recent years.

The amount of data being generated currently is enormous.
A system which can interact with a user and intelligently
responding using the large amounts of data as a knowledge
base would be a very effective way to make data useful for
ordinary users. Anyone who needs specific, meaningful
information retrieved from a particular dataset in simple
language can benefit from such a system. The same algorithm
can be used to answer legal questions by going over legal data.

Or health questions by going over medical data. For example,
the user starts with a question on a topic and continues to ask
questions on the same topic, our system will load data only
based on his initial topic.

With every passing day more and more knowledge is added
to the web and to build better and more accurate systems, it is
important that we factor in this data. To build systems which
respond quickly to user’s questions, we can make use of big
data technologies like Hadoop and MapReduce [1, 2, 3, 4].
These technologies allow us to process the large quantities of
data in parallel and come with real-time answers to questions.
We saw that what we were studying in class can be directly
used to build modern QA systems.

III. RELATED WORK

There are two schools of thought on Question Answering
[14]. The earlier one operates on structured data [11].
Structured data is commonly represented as RDF (Resource
Description Framework) [45] with triples of the form (subject,
relation, object). For example: Barack Obama (subject),
president of(relation), United States(object). The second school
of thought operates on raw text from various sources.
Currently, most of the systems are a hybrid approach, with
question type classification deciding which underlying data
source to use [8].

According to recent surveys of QA based on structured data

[11], the different systems support different kinds of RDF data

sources. There are various RDF data sources (and ontologies):

DBPedia [46], Freebase [47] amongst the major ones,

MuzicBrainz [48], Mooney Geography [12] and many small

ones. The QA systems are two types, ontology specific and

ontology independent. The major problem being that each

ontology has its own vocabulary for relations and its own

schema. This lack of standardization although makes RDF

more usable, makes the use of QA systems on top of it more

difficult. Amongst the ontology independent QA systems is

FREyA [12], which beats all other such systems and is actively

supported on Github by its creators. FREyA uses sophisticated

NLP techniques to decipher the question, understand the

underlying ontology and can answer questions with high

accuracy.

A more recent trend, since 2002 majorly has been to use

publicly available text on the internet to answer questions. Our

system follows this school of thought. [26,14, 11]

Among modern QA systems, one of the most advanced is

IBM’s Watson and the systems abilities were on display when
it won the game show Jeopardy competing with expert human
players. Watson uses a combination of search engines and
domain specific knowledge bases to come with natural
language answers to compound questions [8]. Building a
system comparable in performance is beyond the scope of this
project.

IV. DESIGN

The project will basically have three components and many

subcomponents. The design given below in Figure 1 is a

modified version of the design presented in [8, slide 11]. The

main components are as follows:

1. Question processing (ProcessQueryJson.py)

a. Query Formulation

b. Answer Type Detection

2. Answer retrieval (Map-reduce, searcher. Pig)

a. Document Retrieval

b. Document Ranking

3. Answer processing (ProcessAnswer.py)

Figure 1: Design of our QA system

For a lot of the NLP knowledge that we have applied, we

relied on the notes of the Statistical NLP course at NYU [43].

1) Question Processing:

The given question is used to generate keywords which are

then used to narrow down the answer. Python programming

language was used to code this component. Python was chosen

because of the abundance of NLP and machine learning

libraries which were critical for our project. Question

processing involves query formulation and answer type

detection [8]. For query formulation it is essential to determine

which words in the question will ultimately be the deciding

factors for a correct answer. We can ignore the stop-words like

“is, the, and” and focus more on the nouns, adjectives and

verbs. To identify these components we use a part of speech

tagger. Once we have the nouns we can use named entity

recognition to determine which named entities are referred to

in the question [8]. Based on the type of question, we can also

determine what named entity, if any, is expected as an answer.

For example, if the question starts with a “who” the expected

answer is a PERSON and if the question starts with a “where”

the answer would be a location.

To limit the scope of the project, we decided to restrict the

type of questions to simple factoid questions. A fact based

questions will have a simple fact as an answer. The nature of

the question is such that it need not be broken down into sub

questions which have to be resolved separately. For example

“Where is the Louvre located?” The answer is “Paris”. The

answer to this question is a straight forward fact. A more

complex question would need to be broken down into two or

more factoid questions to be answered. Consider the question

“William Wilkinson’s “An account of the principalities of

Wallachia and Moldova” inspired this author’s most famous

novel”. The answer is “Bram Stoker”. In the example below,

answer to the first part of the question is a clue for the second

part of the question. This question was correctly answered by

IBM’s Watson super computer in the game show Jeopardy [8].

This limiting of question space was done given the limited time

frame we had to complete the project.

One of the primary tasks once given a question is to

determine what type of an answer is expected. Many types of

factual questions will expect a named entity as a response.

Named entities, which are usually proper nouns, pre-defined

categories such as the names of persons, organizations,

locations, expressions of times, quantities etc. For example, the

question “Who founded Virgin Airlines?” has a “PERSON” as

the answer. The question “Which country has the largest

population?” has a “GPE” or a Geo-political entity as the

answer. Both PERSON and GPE are examples of NLTK

named entity tags [9]. The answer type can be determined

using some rule based techniques or machine learning or a

combination of both. Currently we are using rule based

techniques because the question types we are handling are

limited. So a “who” type question will result in an answer type

“PERSON” and a where type question will result in an answer

type “LOCATION” or “GPE”.

However not all answers will return a named entity as an

answer. For example, a question like “Who is Narendra

Modi?” will not return a PERSON as the answer. Similarly

“what” questions, “how” questions and any “Who PERSON?”

questions will have more descriptive answers and will not

return any named entities. In such cases emphasis is on the

“headword” which is the first noun after the “Wh-” word. For

example, “What is the capital of Texas?” will have emphasis

on “capital” and we will look for sentences which have the

word capital in them.

In query formulation we will pick out certain key words

from the question which we will use to query the database and

retrieve documents. For the purposes of the project, we will

ignore the frequently occurring stop words like “is”, “the”,

“of”, “in”, “his” etc. We are only considering nouns, adjectives

and in some cases verbs to formulate our queries. Given a

question, our first task would be to determine the parts of

speech of each word in the question. This is achieved using the

NLTK library which is open source.

Figure 2: Flow of Question Processing component [9]

Given a question we first break it down into a list of words

and then try and determine the part of speech of each word.

The standard way to do this is using Hidden Markov Model to

train over a large data set of human annotated part of speech

tags. Once this is done we get a set of possible part of speech

tags for each word in the sentence and the probability of each

tag. Given a good enough data set, we can get accuracy of

around 95% which is close to state of the art. We can then

determine the most likely tag sequence using the Viterbi

algorithm. NLTK also considers the probability of the tag

given the probability of the preceding word(s). The part of

speech tagging component is built on top of pre-trained.

Consider the below example:

Q: Who is the President of the United States?

After running part of speech tagger we get the following
output:

[('Who', 'WP'), ('is', 'VBZ'), ('the', 'DT'), ('President', 'NNP'),
('of', 'IN'), ('the', 'DT'), ('United', 'NNP'), ('States', 'NNPS'), ('?',
'.')]

We then use this output to determine if any named entities
exist in the POS sequence. Given below is the output:

(S Who/WP is/VBZ the/DT President/NNP of/IN the/DT

 (GPE United/NNP States/NNPS)
 ?/.)

As you can see, United States being a geo political entity
(GPE) was correctly recognized. Now that we know that this is
a “Who” question and the named entity in it is not a PERSON
and hence we can conclude that the response is a PERSON.
The other case in “Who” questions can be like the one
described below.

Q: Who is Barack Obama?

After part of speech tagging:

[('Who', 'WP'), ('is', 'VBZ'), ('Barack', 'NNP'), ('Obama',
'NNP'), ('?', '.')]

After running the named entity recognition component we
get:

(S Who/WP is/VBZ (PERSON Barack/NNP Obama/NNP)
?/.)

We now know that the question is about a person Barack
Obama. The answer in this case cannot be a PERSON type. It
would be a description that can be anything. But the headword
Barack and the noun Obama would be important.

For selecting words to build our query, we first begin by
ignoring the “Wh-” word and the stop words. Considering the
first example, we are left with the words “President”, “United”
and “States”. We can club United and States together and only
look for sentences which contain these two words one after the
other. No other word can come between United and States and
if it does, the words are being used in ways which will not be
useful to us. But this is applicable to “United States” and not
applicable to “Barack Obama”. The answer sentence may state
that “Barack Obama” or “Obama” or “Barack Hussain Obama”
is the president of the United States. All are correct. Hence we
look for “Barack” and “Obama” separately in the database.

In the query formulation, we assign the highest priority to
the Named Entity or headword in the question. Followed by the
nouns and then by the adjectives.

TYPE OF ENTITY PRIORITY

NAMED ENTITY, HEAD WORD 10

NOUN 7

ADJECTIVE 5

Figure 3: Detailed design of our QA system

2) Answer Retrieval:

a) Choice of dataset:

Our learnings from reading papers which used DBPedia

like knowledge base is that, these systems are not scalable and

are not up-to-date [12, 5, 11]. DBPedia extracts structured

information from Wikipedia and curates them into RDF

formatted data [46]. RDF is a resource description framework,

which has an annotation for each data word describing

attributes of that data [46]. For example the RDF of Michelle

Obama [10] will have attributes like birthdate, nationality, etc.

Although this dataset provides a plethora of information about

a particular subject, it is not scalable. For e.g. If the spouse of

Michelle Obama were to change, the entire RDF needs to be

re-engineered by DBPedia and release. Thus the absence of

live information does not make DBPedia a reliable knowledge

base for a question answering system.

Thus we settled on choosing Wikipedia dataset which
reflects up to date information stored as Wikipedia articles.
The database dumps are updated every day [30]. We also used
WikiNews [31] as a news data source for new events. For
referring to important events in the past, we are referring to the
Reuters News Corpus.

 Wikipedia articles were conventionally stored as XML
formatted files with the content of each articles stored within
<Text><Title><ID> tags [30]. We used a Hadoop MapReduce
job to clean up the data. The cleaned-up data is stored in a Pig
Table for further retrieval and processing. We used HBase to
store IDF (Inverse Document Frequency) values which will
help in scoring/ranking candidate answers to the question.

b) XMLParser Module:

Since the input data is an XML formatted data, we had to

figure out a way to allow Mapper class take an XML input

data type as input. Since each of the XML page data must be

processed as a whole, to split and stream them as text bytes

was not feasible in Native Hadoop. Hadoop MapReduce does

not have built-in support for XML. Hence we used Apache

Mahout’s XMLInputFormat class, which provides support for

serializing/deserializing XML documents [32].

XMLInputFormat class extends the TextInputFormat class of

Hadoop library and takes in two parameters namely the

<start> and <end> tags. The text which is embedded between

the <start> and <end> tags are processed as a whole.

To store our input data in a specific format and to enable

transfer of data from Mapper to reducer, we wrote a custom-

serialization object called WikiDataWritable. Our

WikiMapper.java handles the conversion of XMLStreambytes

and creates a WikiDataWritable Object. WikiDataWritable is a

custom-serialization object with attributed defining our

preferred XMLFormat. WikiDataWritable implements the

Writable Interface to serialize and de-serialize XMLData when

read/written as Input/Out Stream. We chose to have the output

format from MapReduce as a common XML which will help

us query multiple data sources seamlessly. Also XML provides

a seamless integration into Pig, which is our second module

[33].

Figure 4: Retrieval engine – Hadoop MR mode

c) Inverse Document Frequency calculator:

To understand how important a word is in the Query, we
need to calculate the tf-idf value for each term in the query. Tf
refers to the term frequency (number of times a word ‘t’ occurs
in a document). IDF value is the inverse document frequency
(how important is this term ‘t’ among all the documents). Tf-
idf weight is used as a measure to score/rank set of possible
candidate answers [34]. The formulae for both are given
below:

Figure 5: TF-IDF score description [34]

We write a Hadoop MapReduce job to scan all sets of

documents (given by XMLParser Module) take frequency
values of all possible words in the document. The output of
this phase is stored as a CSV in hdfs to be later loaded into
HBase table idf.

d) Searcher.pig:

We use Apache pig to load the cleaned wiki dataset as a

table into Pig. Pig offers XML support through its XPath UDF

in piggybank.jar [33]. We load our cleaned.xml data as a table

into Pig (WikiTable). The query output (as Json) from

Question processing phase is also loaded into Pig using the

native JsonLoader of Pig (QueryTable) The choice of pig over

hive arrives from this aspect of easy integration of semi-

structures data like XML and JSON [33, 35]. Term-frequencies

as described above are calculated by a series of joins between

the WikiTable and QueryTable. The idf-values are loaded

from HBASE using HBaseStorage.

Figure 6: Data-pipeline in PIG of searching articles

e) Filtering articles:

The pig script for searching over the corpus takes as input

argument a json that is structured as follows:

{

 "text": "<Actual question typed by

user>",

 "answerType": "<The NLTK named

entity tag of answer>",

 "words": [{

 "priority": <float value>,

 "word": "word 1"

 “alternatives”:[“alt1”,

“alt2”…]

 },…

]

}

Figure 7: Format of json received from Query Processing

component

The pig script uses a Filter UDF, which returns true for

articles that have any of the whole words (ignoring case) in

the “words” part of the json, or their corresponding

alternatives. This results in a lot of articles, but that’s a

problem for the ranking system.

f) Ranking Articles:

The ranking UDF called from the pig script returns a score for

each article. This UDF is only called for the filtered articles,

and the UDF scores each article independent of any other

article. A higher score signifies that the rank is higher.

We use two types of ranking heuristics:

1) tf-idf score of matched words in the article

2) proximity score of matched words in the article

Before we discuss the heuristics, we need to establish that we

could also learn to rank, using user data, but we need

heuristics to begin with. We can collect user data, by

monitoring on a web UI the rank of the answer (in case of

multiple answers) or correctness of answer. The inverse rank

[8] of chosen answer or the rejection of answer can then be

used to tune the ranking algorithm internally by gradient

descent. Back to our heuristics.

The proximity score is the measure of the closeness of the

query words in a document. It is indicative of the relevance of

the document to the actual answer. As an example, for the

query words “president”, “United”, “States” should give

higher priority to an article having them in the same sentence,

versus an article having them in different paragraphs.

We use a common metric called “Slop Distance” [49] for

measuring distance between query words in a sentence. The

slop distance is defined as the number of non-query words in

the minimum length contiguous array of words containing all

the matched query words of an article. Here are a few

examples for the previously discussed query words:

Sentence Slop

Distance

The President of The United States 2

United States President, Barack

Obama

0

The President of India visited The

United States

4

Figure 8: Examples of Slop Distance

To measure this slop distance we designed an algorithm [50],

which calculates the Slop distance in O(n) time complexity

and O(number of query words) space complexity. It is present

in “ScoreGen.java#minWindow()”

Given that we have our slop distance, we now need to

generate a score which will be able to compare various

documents with their own number of matched terms and slop

distances. We need a function which takes (slop distance,

number of matched words) and returns a score. Let’s denote

slop distance as “x”, number of matched words as “n” and

score as y = f(x,n).

The first solution is to vary each proximity score between the

number of matched query words in the article and +1. For

example for three matched terms, we get a score between

three and four.

This solution however would fail in the following case. Article

1 has 4 matched terms with a slop distance of 100 (consider all

the words being mentioned in two different paragraphs).

Article 2 however has three terms matched, but with a slop

distance of 5 (maybe, in the same sentence). Clearly, article 2

is more likely to contain the answer, our solution above is not

usable.

We need a function, which till a certain threshold th, scores

between [n, n+1] for an article and below that afterwards. This

would choose an article with (n-1) matched terms over an

article with (n) matched terms too far apart. We would also

like that the threshold be a function of number of matched

terms as we would need to keep a bigger slop window for 10

terms in comparison to 2 terms. So th needs to be th(n)

Let’s consider three types of such functions in the diagram

below. We are considering n = 2, and th(n) = 2n. That is the

number of matched terms are 2, and if they have a slop

distance more than 4, we score them below 2.

Figure 9: Comparison of choices for y=f(x,n) for n=2

The negative exponential penalizes less for small x, but grows

very fast. The negative logarithm penalizes okay till x=2n, but

never penalizes high slop a lot (goes very slowly to –infinity).

The negative linear function, gets the best of both worlds and

also reaches –infinity at an appropriate pace. We established

this intuition after repeated search rankings with ambiguous

examples of the kind discussed above. We choose linear as

our preferred f(x,n), and fixed on th(n) = 2n after these

experiments.

𝑓(𝑥, 𝑛) =
−𝑥

2𝑛 − 1
+

2𝑛2 + 𝑛

2𝑛 − 1

Figure 10: Chosen proximity function

This is how our f(x,n) looks for 𝑛 ∈ {1,2,3,4,5,6} and 𝑥 ∈
[1,15]. The black line denotes the threshold function below

which the score is below n.

Figure 11: Chosen f(x,n)

n 1 2 3 4 5

Color Blue Red Green Purple Orange

Figure 12: Colors of line for different "n" values

Now, we have an appropriate f(x,n) which scores within it’s

bound and penalizes appropriately. Let’s see some toy results

to see the output of our function.

Text Proximity

Score

Barack Obama is the President of the United

States

3.8

The President of India visited the United

States

3.4

President of India 2

Random text snippet 0

Figure 13: Sample text snippets and their proximity scores

calculated by our heuristic.

3) Distributed system architecture:

In the below few sections, we investigate our choices of

appropriate distributed systems technologies over their

alternatives.

Hadoop for cleaning data: Although there was a lack of

XML support in Native Hadoop, we used Hadoop’s

distributive capabilities to process the entire Wiki dataset.

MapReduce is much more scalable than existing file-indexing

systems like solr [32].

Pig for retrieving and ranking data: The inbuilt support for
loaded semi-structured data like XML’s and Json were better
with Pig than with Hive [33, 35]. Also, Pig gives the user the
possibility to write seamless User defined functions(UDF’s) to
work on bags/tuples of data in numerous ways [41]. We also
created a filtering UDF in Hive by sub classing GenericUDF.
This achieved the same goals as SatisfyQuery UDF in Pigs.
We chose Pig over Hive later as it had very good support for
parsing XML data. This flexibility allowed us to use Pig
instead of Hive.

HBase as word,idf value store : HBase [42] is a distributed,

scalable data store built on top of HDFS. In our case, Hbase

table stores the idf values for all the words in the data set. This

could run into millions of rows. HBase stores <word,val> pair

as a dictionary in hdfs. This makes it more scalable and

retrieval and lookups are faster. In future, if we would like to

add attributes to a keyword(noun/ver/adjective), we just have

to define new column family in existing columns.

Pig UDF’s over Piglatin: We are using Regex to filter

documents, which contain the target word. In the design we

also support the use of alternatives to words, which are

semantically appropriate synonyms. This complex processing

is what prompted us to write our own UDF [41]. The

SatisfyQuery UDF subclasses FilterFunc from pig and returns

a true for any document satisfying the json query.

For scoring the articles, we have created our own function for

score calculation. This also required the use of UDFs in pig.

ScoreGen subclasses EvalFunc<Float> to generate a float score

for each article. Moreover, Pig UDFs are extremely easy to

write and integrate with the pig scripts. They also give the

added advantage of using Java. This facilitated us to take a

complex json as input to the UDF and de-serialize it using

Jackson libraries.

4) Answer Processing:

 Once the passage retrieval engine has returned a set of

paragraphs which may contain the answer to our query, the

answer processing component goes through each sentence of

each paragraph in order to determine if it contains the answer

to the question. Once again, for the sake of simplicity given the

time frame, we consider just one candidate answer and as soon

as we find an appropriate sentence, we exit the application.

Often there are many candidate answers and various machine

learning techniques can be employed in order to choose the

best one.

To find the correct answer, we consider one sentence of one

paragraph at a time. We then run part of speech tagging and

named entity recognition on this sentence the same way as

above. Once we have the POS tags and the named entities

[43], we then check and see if the sentence has everything we

are looking for. Consider the examples below (The data is from

the Wikipedia data dump):

Q: Where is the capital of England?

So we are looking for a sentence which contains a GPE
(other than England) and the words “capital” and “England”.
Also consider a sample paragraph given below returned by the
information retrieval component.

“England's terrain mostly comprises low hills and plains,
especially in central and southern England. However, there
are uplands in the north (for example, the mountainous Lake
District, Pennines, and Yorkshire Dales) and in the south west
(for example, Dartmoor and the Cotswolds). The capital of
England is London, which is the largest metropolitan area in
the United Kingdom and the European Union.[nb 1] England's
population of over 53 million comprises 84% of the population

of the United Kingdom, largely concentrated around London,
the South East, and conurbations in the Midlands, the North
West, the North East and Yorkshire, which each developed as
major industrial regions during the 19th century.[9]”

Only one sentence “The capital of England is London,
which is the largest metropolitan area in the United Kingdom
and the European Union.” qualifies all of our criteria and is
extracted and printed as the answer. Consider the following
question:

Q: Who was named the 2009 Nobel Peace Prize laureate?

In this case we are looking for a sentence which contains a
PERSON and the words “Nobel”, “Peace”, “Prize” and
“laurate”. A sample paragraph as retrieved is given below.

“In 2004, Obama received national attention during his
campaign to represent Illinois in the United States Senate with
his victory in the March Democratic Party primary, his
keynote address at the Democratic National Convention in
July, and his election to the Senate in November. He began his
presidential campaign in 2007 and, after a close primary
campaign against Hillary Rodham Clinton in 2008, he won
sufficient delegates in the Democratic Party primaries to
receive the presidential nomination. He then defeated
Republican nominee John McCain in the general election, and
was inaugurated as president on January 20, 2009. Nine

months after his inauguration, Obama was named the 2009
Nobel Peace Prize laureate.”

The last sentence contains the answer and is correctly
selected and printed.

One obvious improvement would be to print only the
answer and not any other part of the sentence. So in the above
example, “Nine months after the inauguration” is additional
information that need not be given and only “Obama” can be
printed as the answer. In this example the solution is trivial and
we simply print the named entity found in the sentence. But
consider the answer in the previous example. In “The capital of
England is London, which is the largest metropolitan area in
the United Kingdom and the European Union.” There are three
location entities London, United Kingdom and European
Union. Any one of these could be the answer and we would
need to rank the potential answers using features like [8]
Pattern Match, keyword distance novelty factor etc. This is
something we hope to incorporate in our future endeavors.

V. RESULTS

Experimental setup issues: We faced some hurdles in
choosing the right distributed technology for retrieving
documents. Although Hive and Pig were both possible
systems, we settled on Pig based on the ease of setup and
flexibility of writing UDF’s to interact with Hive. The choice
of Hbase as distributed key-value store although was intuitive
we faced some hurdles when retrieving records from Hbase.
The integration of Hbase with Pig is not possible with the
current stable release(1.12) of Hbase[36]. Hence we had to use
an older version(0.98) to make Hbase work with Pig. Also,
since Hbase also stores the timestamp data (at which a record
was inserted), It makes more sense to use Hbase for range

based queries which involve Timestamp. Our learning out of
this experiment is that Hbase was a poor choice of Distributed
key-value store and a better choice would’ve been Hive.
Another issue we faced was in writing PIG UDF’s which
accepts both a tuple and a databag as arguments[37]. The
scenario arose when we wanted to send the QueryTable to a
PIG UDF along with tuples(Title,Text). To work around this
issue, we had to write expensive PIG Latin joins which could
otherwise have been handled in PIG Udf’s.

We had to narrow down the scope of questions we were
answering for this project because this was turning out to be a
large undertaking. We did this by picking simple factoid based
questions. We also made some simplifying assumptions in
terms and used some heuristics for ranking and considering
only one answer which matched our requirements.

Below are some of the questions we were able to answer
correctly.

Q: Who is Barack Obama?

A: Barack Hussein Obama II (born August 4, 1961) is the
44th and current President of the United States, as well as the
first African American to hold the office

Q: Who is the President of the United States?

A: Barack Hussein Obama II (born August 4, 1961) is the
44th and current President of the United States, as well as the
first African American to hold the office

Q: Who was named the 2009 Nobel Peace Prize laureate?

A: Nine months after his inauguration, Obama was named
the 2009 Nobel Peace Prize laureate.

Q: What is the capital of England?

A: The capital of England is London, which is the largest
metropolitan area in the United Kingdom and the European
Union

Q: Who is Malik Junaid Ishtiaq Ali?

A: Malik Junaid Ishtiaq Ali son of Shaheed Abdul Razaq
Jaora who was the Journalist and martyred by the smuglers due
to the expose off the crime of the smuglers in Mianwali

Not answered correctly:

Q: When was Wales included in The Kingdom of England?

<No Answer>

Initial hypothesis and results: Our hypothesis was that It is
feasible to build a Text based Question answering system using
distributed system technologies to achieve same or better
performance over similar QA systems build using traditional
technologies like solr/lucene or SQL relational databases on
structured data like RDF’s. Our experimental results show that
we have indeed built a simple system, which by leveraging
advantages of Hadoop & Mapreduce technologies performs
much better in speed/scale over traditional file indexing
systems like solr/lucene despite our choice of open text data
which is a harder subset problem among QA systems.

VI. FUTURE WORK

The scope of this project is immense and given enough
time, we can come with a more intelligent application that can
still be used in real-time. One thing missing from our project is
a user interface. A larger knowledge base deployed on a cluster
will significantly cut down response time.

As of now we are posting grammatically correct questions
with correctly spelled words. Checking grammatical and
spelling correctness can easily be incorporated in Query
processing and will make the application more user friendly.
Another useful addition would be utilizing word2vec [51] to
handle tenses, synonyms and similarly used words. This would
help us detect answers when they contain synonyms or plurals
of the query words. We also need to move from a rule based
answer type detection heuristic to a more data driven approach.

All modern Question Answering systems use a
combination of information retrieval and knowledge based
methods [38]. Our system employs only Information Retrieval
methods. This was chosen as it increases the usability of our
system to openly available data on the web. Domain specific
knowledge bases would be useful for answering questions
which require in-depth knowledge of any specialized field.
Like highly complex questions in medicine, math and science.

We would also like to handle some descriptive questions
like “how” and “explain” type questions. Another good
possibility to explore would be breaking down complex
questions in many sub questions. Then answer each question
individually leading up to a final answer. Additional handling
of pronouns will help us answer a sequence of questions on the
same topic so the continuous questions like “Who is Obama?”
followed by the question “Who is his wife?” will be
understood and answerable.

Using Pig, we were able to retrieve only the matching
documents/articles for each query. This can further be refined
by additional MapReduce or spark jobs to retrieve the exact
passage/sentence which will answer the query.

Also, The existing system is run as a batch processing
system. Searcher. Pig script is called manually after the
completion of the MapReduce programs. HBase table is
created and loaded separately into HDFS. Going further, we
can integrate all these separate distributed processing jobs into
a synchronized dataflow script using Oozie[39].

To speed up data processing, we can use an in-memory
data processing framework like Apache Spark[40] instead of
Hadoop where intermediate-results are stored back in disk after
each MapReduce task.

Extending the distributed system capabilities will give us a
real time question answering system where users can ask
questions and get immediate answers.

Incorporating all these functionalities will help us develop
an expert system people can have a conversation with.
Everything discussed so far is achievable with current
technology and we hope to continue working on this after the
completion of the Real-time Big Data Analytics course.

VII. CONCLUSION

We have successfully built a text based Question Answering

system on top of Hadoop. We have limited the scope of the

questions to prioritize focus over the overall system

architecture. The resulting system uses the Wikipedia data

dump, the WikiNews data dump and Reuters News Corpus to

answer a limited set natural language questions. The choice of

a distributed system architecture in our case where the data

corpus was huge (40GB), and there were multiple

dataprocessing steps involved significantly sped up the

processing time compared to a system which processes

documents sequentially. Our QA system had many modules

which were trivially partitionable and recombinable and by

bringing in distributed approaches in these modules, we

achieved an almost real time system with low latency

execution. With improvements suggested in the previous

section, we can suppose that Distributed technologies like

Hadoop, Map reduce hints at a possibility of bringing a

complex process intensive system to real time efficiencies.

ACKNOWLEDGMENT

We would like to thank Prof. Suzanne McIntosh for giving
us the opportunity to work on this project. It was a great
learning experience integrating distributed computing
technologies with NLP and being able to extract relevant
information from a large data set.

This project would not have been possible without freely
available research papers, open source software and teaching
material. We utilized a wide array resources to research and
implement this project. We would like to thank all open source
contributors who made this project possible.

REFERENCES

[1] T. White. Hadoop: The Definitive Guide. O’Reilly Media Inc.,

Sebastopol, CA, May 2012.

[2] A. Gates. Programming Pig. O’Reilly Media Inc.,Sebastopol, CA,
October 2011.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In proceedings of 6th Symposium on Operating Systems
Design and Implemenation, 2004.

[4] S. Ghemawat, H. Gobioff, S. T. Leung. The Google File System. In
Proceedings of the nineteenth ACM Symposium on Operating Systems
Principles – SOSP ‘03, 2003.

[5] Adel Tahri and Okba Tibermacine: DB-Pedia Based Factoid Question
Answering System

[6] Antoine Bordes, Jason Weston and Nicolas Usunier: Open Question
Answering with Weakly Supervised Embedding Models

[7] Ben Hixon, Peter Clark and Hannaneh Hajishirzi: Learning Knowledge
Graphs for Question Answering through Conversational Dialog.

[8] http://spark-public.s3.amazonaws.com/nlp/slides/qa.pdf.

[9] http://www.nltk.org/book/ch07.html

[10] http://dbpedia.org/page/Michelle_Obama.

[11] Lopez, Vanessa, et al. "Is question answering fit for the semantic web? a
survey." Semantic Web 2.2 (2011): 125-155.

[12] Damljanovic, Danica, Milan Agatonovic, and Hamish Cunningham.
"FREyA: An interactive way of querying Linked Data using natural
language." The Semantic Web: ESWC 2011 Workshops. Springer
Berlin Heidelberg, 2012.

[13] Andrenucci, Andrea, and Eriks Sneiders. "Automated question
answering: Review of the main approaches." null. IEEE, 2005.

[14] Lin, Jimmy, and Boris Katz. "Question answering techniques for the
World Wide Web." EACL-2003 Tutorial (2003).

[15] Liu, Chang, et al. "Hadoopsparql: a hadoop-based engine for multiple
sparql query answering." The Semantic Web: ESWC 2012 Satellite
Events. Springer Berlin Heidelberg, 2012. 474-479.

[16] Hirschman, Lynette, and Robert Gaizauskas. "Natural language question
answering: the view from here." natural language engineering 7.04
(2001): 275-300.

[17] Katz, Boris, et al. "Omnibase: Uniform access to heterogeneous data for
question answering." Natural Language Processing and Information
Systems. Springer Berlin Heidelberg, 2002. 230-234.

[18] Bordes, Antoine, et al. "Large-scale simple question answering with
memory networks." arXiv preprint arXiv:1506.02075 (2015).

[19] Zettlemoyer, Luke S., and Michael Collins. "Learning to map sentences
to logical form: Structured classification with probabilistic categorial
grammars." arXiv preprint arXiv:1207.1420 (2012).

[20] Cooper, Richard J., and Stefan M. Rüger. "A Simple Question
Answering System." TREC. 2000.

[21] Yahya, Mohamed, et al. "Natural language questions for the web of
data." Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language
Learning. Association for Computational Linguistics, 2012.

[22] Prager, John, et al. "Question answering by predictive annotation."
Advances in Open Domain Question Answering. Springer Netherlands,
2006. 307-347.

[23] Radev, Dragomir R., John Prager, and Valerie Samn. "Ranking
suspected answers to natural language questions using predictive
annotation." Proceedings of the sixth conference on Applied natural
language processing. Association for Computational Linguistics, 2000.

[24] Kwok, Cody, Oren Etzioni, and Daniel S. Weld. "Scaling question
answering to the web." ACM Transactions on Information Systems
(TOIS) 19.3 (2001): 242-262.

[25] Croft, W. Bruce, Donald Metzler, and Trevor Strohman. Search engines:
Information retrieval in practice. Reading: Addison-Wesley, 2010.

[26] Weston, Jason, et al. "Towards AI-complete question answering: a set of
prerequisite toy tasks." arXiv preprint arXiv:1502.05698 (2015).

[27] Wang, Chong, et al. "Panto: A portable natural language interface to
ontologies." The Semantic Web: Research and Applications. Springer
Berlin Heidelberg, 2007. 473-487.

[28] Schätzle, Alexander, et al. "PigSPARQL: A SPARQL Query Processing
Baseline for Big Data." International Semantic Web Conference (Posters
& Demos). 2013.

[29] Unger, Christina, and Philipp Cimiano. "Pythia: Compositional meaning
construction for ontology-based question answering on the semantic
web." Natural Language Processing and Information Systems. Springer
Berlin Heidelberg, 2011. 153-160.

[30] https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-
articles.xml.bz2

[31] https://dumps.wikimedia.org/enwikinews/latest/

[32] http://xmlandhadoop.blogspot.com/

[33] https://pig.apache.org/docs/r0.7.0/api/org/apache/pig/piggybank/storage/
XMLLoader.html

[34] www.tfidf.com

[35] http://joshualande.com/read-write-json-apache-pig/

[36] www.stackoverflow.com

[37] http://stackoverflow.com/questions/20667485/udf-bag-of-tuples-causes-
error-long-cannot-be-cast-to-tuple

[38] https://en.wikipedia.org/wiki/Question_answering

[39] http://oozie.apache.org/

[40] http://spark.apache.org/

[41] https://pig.apache.org/docs/r0.9.1/udf.html

[42] https://hbase.apache.org/

[43] Stat NLP: http://cs.nyu.edu/courses/fall15/CSCI-GA.3033-008/

http://spark-public.s3.amazonaws.com/nlp/slides/qa.pdf
http://dbpedia.org/page/Michelle_Obama
http://xmlandhadoop.blogspot.com/
https://pig.apache.org/docs/r0.7.0/api/org/apache/pig/piggybank/storage/XMLLoader.html
https://pig.apache.org/docs/r0.7.0/api/org/apache/pig/piggybank/storage/XMLLoader.html
http://www.tfidf.com/
http://joshualande.com/read-write-json-apache-pig/
http://www.stackoverflow.com/
http://stackoverflow.com/questions/20667485/udf-bag-of-tuples-causes-error-long-cannot-be-cast-to-tuple
http://stackoverflow.com/questions/20667485/udf-bag-of-tuples-causes-error-long-cannot-be-cast-to-tuple
https://en.wikipedia.org/wiki/Question_answering
http://oozie.apache.org/
http://spark.apache.org/
https://pig.apache.org/docs/r0.9.1/udf.html
https://hbase.apache.org/
http://cs.nyu.edu/courses/fall15/CSCI-GA.3033-008/

[44] https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

[45] https://en.wikipedia.org/wiki/Resource_Description_Framework

[46] http://wiki.dbpedia.org/

[47] https://www.freebase.com/

[48] https://musicbrainz.org/

[49] https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/search/Phr
aseQuery.html#getSlop()

[50] Implementation of problem at https://leetcode.com/problems/minimum-
window-substring/

[51] https://code.google.com/p/word2vec/

[52] https://en.wikipedia.org/wiki/AI_winter

https://en.wikipedia.org/wiki/Resource_Description_Framework
http://wiki.dbpedia.org/
https://www.freebase.com/
https://musicbrainz.org/
https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/search/PhraseQuery.html#getSlop()
https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/search/PhraseQuery.html#getSlop()
https://leetcode.com/problems/minimum-window-substring/
https://leetcode.com/problems/minimum-window-substring/
https://code.google.com/p/word2vec/

